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Abstract

The paper presents an investigation of the subcritical/supercritical nature of the flutter Hopf bifurcation
of a two degree of freedom with linear, quadratic, and cubic restoring forces. Under certain conditions, the
instability gives rise to stable limit cycle oscillations, whereas unstable periodic orbits appear for other
conditions, providing a potentially dangerous non-linear instability mechanism in regimes for which linear
analyses predict stability. The analytic approach employed herein, allows for a more thorough investigation
of the high-dimensional parameter space than that afforded by others’ experimental and computational
efforts. Counterexamples to previously held conjectures are readily found. Favorable comparisons are
made to predictions based on less rigorous describing function or harmonic balance techniques.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

It has been nearly three quarters of a century since Theodorsen’s seminal linear analysis
illuminating the physical mechanism of airfoil flutter. Mathematically, the self-excited instability
corresponds to a complex conjugate pair of eigenvalues crossing the imaginary axis transversely, a
Hopf Bifurcation. While linear analyses suffice to determine stability conditions with respect to
infinitesimal perturbations, they provide no information of the interesting and potentially
destabilizing non-linear phenomena that may occur even for reasonably small motions.
Hopf’s theorem [1] leads us to generically expect the change in stability to spawn limit cycle

oscillations. The instabilities typically come in two forms: supercritical or subcritical. The former
gives rise to stable periodic orbits on the unstable side of the instability, providing a dynamic
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mechanism that arrests post-instability growth of solutions. Subcritical Hopf bifurcations, on the
other hand, produce unstable periodic orbits within regimes for which a linear analysis predicts
the aeroelastic system is stable. Under such conditions, small perturbations of the state could lead
to catastrophic growing oscillations even though the classical Theodorsen analysis predicts
stability. In the present paper, we outline a procedure for efficiently performing parametric studies
to determine the conditions which lead to subcritical and supercritical bifurcations in the classical
flutter problem with non-linear structural restoring forces. It is a task of particular importance to
us. Currently, we are considering using fluttering airfoils as passive actuators in a class of flow
control problems.
We are far from the first to perform parametric studies of the non-linear character of the flutter

instability. Woolston [2], in 1957, simulated the equations of motion on an analog computer.
More recently, Lee et al. [3] embarked on a limit cycle safari, using numerical integration of a
model set of equations and perturbation theory to determine supercritical and subcritical regimes,
amplitudes, and frequencies of oscillation. Several authors (e.g., Refs. [4–9]) have investigated the
non-linear dynamics well beyond the flutter instability, cataloging secondary bifurcations, period
doublings, and chaos in a handful of representative systems.
In the classical linear flutter problem, there are six dimensionless parameters that characterize

the dynamical system. Additional parameters are needed to characterize non-linearities in the
restoring springs. The rather high dimension of parameter space leads Lee et al. [3] to state that ‘‘a
complete parametric study of the system [would be] practically impossible.’’ As a consequence,
previous researchers performing physical and numerical experiments have considered a severely
restricted set of test cases, often only considering variations of a single-parameter cubic non-
linearity in the restoring torque of the pitch spring. Nonetheless, they have inferred a general
principle [2,3]: when the pitch spring is hard (i.e., stiffness increases with deflection), the Hopf
bifurcation is of the more benign supercritical variety, and when the spring is soft (opposite of
hard), one encounters the more dangerous subcritical Hopf bifurcations. We shall refer to this
empirical principle as the ‘‘flutter criticality hypothesis.’’ Although previous authors acknowledge
that counterexamples may exist, and even offer hypothetical physical mechanisms [2,3], we are
unaware of any such counterexamples demonstrated in the literature. Price et al. [4] claim to
discover limit cycle oscillations at flow speeds below the linear flutter boundary in a system with a
hard pitch spring. However, a closer examination of their work reveals what we would consider an
improper calculation of the linear flutter velocity: if one properly linearizes the system about the
undeflected equilibrium, one obtains a supercritical Hopf bifurcation in accordance with the
flutter criticality hypothesis.
In the current work, we seek an analytical approach to avoid laborious searches via numerical

simulation and experiment. Ignoring, for the moment, secondary instabilities, period doublings
and chaos, we focus here on the subcritical/supercritical nature of the primary flutter instability.
Although describing function (harmonic balance) analyses have been successfully implemented in
flutter problems [10–12,4], we initially shy away from the technique. Strong filtering assumptions,
on which the describing function techniques rely, do not apply to the flutter problem, and we are
skeptical about its lack of rigor. Instead, we employ the theories of center manifolds and normal
forms. Through a short sequence of algebraic manipulations, we are able to calculate a normal
form coefficient, the sign of which determines whether the bifurcation is subcritical or
supercritical. The ease at which we can perform the calculation affords a more thorough
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investigation of the parameter space through which we readily find counterexamples to the flutter
criticality hypothesis. Furthermore, we note that the theoretical framework developed here serves
as a foundation upon which we build analyses of the considerably richer dynamics of multiple
blade [13,14] and cascade flutter.
During the final stage of preparation of this manuscript, we learned of work by Liu et al. [15] in

which center manifolds and normal forms were used to study the same physical system. However,
the research objectives of that paper differ markedly from ours, and the two projects complement
each other.
Finally, since our analyses are performed on reduced order models, we back up our findings via

numerical simulations of a high fidelity model with linearized aerodynamics.

2. Low order dynamical model

2.1. Model development

The dynamical systems analysis tools that we seek to apply to the fluid–structure interaction
problem require that, unlike traditional flutter analyses, we represent the system as a relatively
small set of ordinary differential equations (ODEs) in the time domain. A schematic of the
canonical flutter problem is depicted in Fig. 1. The airfoil, situated in a 2-D incompressible,
inviscid, and nominally irrotational flow, has two elastic degrees of freedom: vertical translation
(plunge), and rotation (twist) about some pre-defined elastic axis. The equations of motion for the
system, after scaling become

*h00 � w cosðaÞa00 þ w sinðaÞa02 þ r2a
@ *V

@ *h
¼

*U2

m
*L;

� w cosðaÞ *h00 þ r2aa
00 þ r2a

@ *V

@a
¼

*U2

m
*Mea; ð1Þ

where *L and *Mea are the non-dimensional lift and aerodynamic pitching moment about the elastic
axis, respectively. The astute reader will note two main differences between the equations above
and those that typically appear in the flutter literature. The first is cosmetic due to our preference
to call upward displacements positive. Secondly, rather than scale time by the flow speed as is
customary, we scale time t by the uncoupled natural pitch frequency: t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ka1=Iea

p
t ¼ oat: This

mechanical scaling allows us to consider flow regimes which include U ¼ 0 without any special
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effort. The symbol *V above represents the potential for the elastic restoring forces:

*V ¼
X 2

r2a

1
2
*h2 þ 1

3
dh22

*h3 þ 1
4
dh3

*h4
� �

þ 1
2
a2 þ 1

3
da2a

3 þ 1
4
da3a

4: ð2Þ

Thus, we consider independent pitch and plunge springs with quadratic and cubic
non-linearities.
In the discussion that follows, we assume that the structural non-linearities are more severe that

those due to the aerodynamics. Thus the incidence angles are safely under 10� and we may apply
small angle approximations cosðaÞE1; sinðaÞa02E0; and the inertial non-linearities in Eq. (1)
vanish. Under these conditions, the unsteady aerodynamic lift and moment are well approximated
by

*LðtÞ ¼
L

prbU2
¼ 2 *GðtÞ �

1

*U2
h00ðtÞ þ

1

*U
a0ðtÞ �

xea � 1

*U2
a00ðtÞ ð3Þ

and

*MeaðtÞ ¼
Mea

prb2U2
¼ 2 xea � 1

2

� �
*GðtÞ þ

xea � 1

*U2
½� *h00 � ðxea � 1Þa00	

þ
xea � 3

2

*U
a0 �

1

8 *U2
a00: ð4Þ

The first term in each of these expressions contains

*GðtÞ ¼ Fð *UtÞ *W3=4ð0Þ þ
Z t

0

Fð *Uðt� t0ÞÞ
d *W3=4

dt0
dt0; ð5Þ

where F is Wagner’s function. The scale factor *U in its argument maps the ‘‘mechanical’’ non-
dimensional time, t ¼ oat to ‘‘aerodynamic’’ non-dimensional time #t ¼ Ut=b; (i.e., #t ¼
Ut=oab ¼ *Ut) with which Wagner’s function is usually defined. The symbol *W3=4 in Eq. (5) is
the normalized upwash at the 34- chord location on the flat plate airfoil due to its angle of incidence
and motion:

*W3=4 ¼
W3=4

U
¼ �

1

*U
*h0 þ aþ

1

*U
3
2� xea

� �
a0: ð6Þ

The remaining terms in Eqs. (3) and (4) come from apparent mass effects and what Fung [16] calls
a circulatory centrifugal force.
Performing integration by parts on Eq. (5), we obtain

*GðtÞ ¼ Fð0Þ *W3=4ðtÞ �
Z t

0

@Fð *Uðt� t0ÞÞ
@t0

W3=4ðt0Þ dt0:

Although Wagner’s function, FðtÞ; is defined by integrating expressions containing products of
modified Bessel functions, making the aerodynamics inherently infinite dimensional, Jones [17]
and Jones [18] have devised good exponential approximations:

Fð *Uðt� t0ÞÞE1� K2e
�s2 *Uðt�t0Þ � K3e

�s3 *Uðt�t0Þ

)
@

@t0
Fð *Uðt� t0ÞÞE� s2 *UK2e

�s2 *Uðt�t0Þ � s3 *UK3e
�s3 *Uðt�t0Þ; ð7Þ
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that can be effectively used to cast the unsteady aerodynamics in a low-dimensional setting (see
Fig. 2(a)). Employing the approximation, Eq. (5) becomes

*GðtÞ ¼ *G0ðtÞ þ *G1ðtÞ þ *G2ðtÞ; ð8Þ

where

*G0ðtÞ ¼ ð1� K1 � K2Þ *W3=4ðtÞ; ð9Þ

*GjðtÞ ¼ sj
*UKj

Z t

0

e�sj
*Uðt�t0Þ *W3=4ðt0Þ dt0; jAf1; 2g: ð10Þ

We note that with the aid of Liebniz’s rule,

d

dt
GjðtÞ ¼ � s2j *U2Kj

Z t

0

*W3=4ðt0Þ dt0 þ sj
*UKjW3=4ðtÞ;

¼ � sj
*Uð *GjðtÞ � KjW3=4ðtÞÞ: ð11Þ

Thus by substituting Eqs. (8)–(11) into Eqs. (3) and (4), we express the unsteady aerodynamics in
terms of two linear first order ordinary differential equations. Added to the two degree of freedom
mechanical system (1), we obtain a set of equations on a six-dimensional phase space to describe
the flow-induced vibrations. We believe the equations to be equivalent to the system of eight
equations presented by Lee et al. [3], modified by a dimension-reducing simplification we have
exploited.

2.2. Model validation

In Fig. 2(a), we show the approximations to Wagner’s function (solid curve) using Eq. (7) and
coefficients by Jones [17]: K1 ¼ 0:165; s1 ¼ 0:0455; K2 ¼ 0:335; s2 ¼ 0:300 (dashed curve); and
Jones [18]: K1 ¼ 0:165; s1 ¼ 0:041; K2 ¼ 0:335; s2 ¼ 0:32 (dotted). It is a simple matter to
calculate the complex frequency response of GðtÞ to a sinusoidal input, *W3=4 ¼ eio

*Ut: The result,

CðoÞ ¼ ð1� K1 � K2Þ þ
s21K1

s21 þ o2
þ

s22K2

s22 þ o2

� 	
� i

s1K1o
s21 þ o2

þ
s2K2o
s22 þ o2

� 	
; ð12Þ
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imaginary part of Theodorsen’s function. (Dashed), approximation using coefficients of Jones [17]; (dotted),

approximation using coefficients of Jones [18]; (solid), true curves.
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is the analog of Theodorsen’s function. In Figs. 2(b) and (c) we plot the real and imaginary parts
of the approximate Theodorsen functions along with the true Theodorsen functions. We see that
some of the differences between Wagner’s function and its exponential approximations are
amplified in the frequency response, particularly the imaginary parts.
With today’s computers1 it is a rather simple task to fit higher order approximations,

Fð *UtÞE1�
XNF

j¼1

Kje
�sj

*Ut; ð13Þ

to Wagner’s function. Upon choosing NF ¼ 4; we select K1 ¼ 0:2552078488; s1 ¼ 0:1708445093;
K2 ¼ 0:1290432917; s2 ¼ 0:5610424665; K3 ¼ 0:09654817188; s3 ¼ 0:04680475392; K4 ¼
0:01920068755; s4 ¼ 0:006478169099: Fig. 3 shows comparisons of the new aerodynamic model
to Wagner’s and Theodorsen’s functions, similar to Fig. 2. This time, however, the
approximations are nearly indistinguishable from the true step and frequency responses.
In Figs. 4(a) and (b), we show flutter speed, *UF ; predictions for the six- and eight-dimensional

models, respectively. The dotted curves in each of the figures represents the true flutter curves
calculated by Theodorsen’s flutter determinant [16]. Again, predictions of the model with fourth
order aerodynamics agree almost exactly with those of the full system while those of the second
order aerodynamics have more perceptible differences. Consequently, we shall use the eight-
dimensional model with fourth order aerodynamics in the remainder of this investigation.

3. Dynamical systems toolbox

Oscillatory instabilities, whether occurring in models of flow-induced vibrations, electrical
circuits, or chemical reactions, typically have the same mathematical structure. Here we briefly
outline tools from the theory of non-linear dynamical systems we shall employ to distill, from the
system, its essential features.
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1 Jones and Jones published their approximations in the 1940s.
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3.1. Center manifolds

The first tool is one to systematically reduce the dimension of the system further. At the onset of
instability, we begin by decomposing the set of differential equations as

’x ¼ Ax þ f ðx; yÞ; xARa; ð14Þ

’y ¼ By þ gðx; yÞ; yARb: ð15Þ

Here, all the eigenvalues of A and B all have zero and negative real parts, respectively. Thus the
co-ordinates x represent the critical modes while the y variables are locally stable.
According to the Center Manifold Theorem [19], there exists a p-dimensional invariant

manifold, W c; lying tangent at x ¼ y ¼ 0 to the linear space spanned by the x variables (center
eigenspace). Since the critical eigenvalues for the flutter problem occur in a complex conjugate
pair, the center eigenspace Ec and the center manifold, W c; are two dimensional ða ¼ 2Þ: They are
shown schematically in Fig. 5. Invariance implies that solutions starting on W c remain on the
center manifold for all time. Since the vector field of the differential equations contracts in
transverse directions, solutions close to the center manifold are attracted to it. Thus local
properties such as system stability are determined by the dynamics restricted to the center
manifold.
In practice, one often expresses the center manifold y ¼ hðxÞ explicitly in the form of a power

series. Substituting into Eq. (15), we obtain

@h

@x
’x ¼ BhðxÞ þ gðx; hðxÞÞ:

Then, employing Eq. (14), invariance is expressed by

@h

@x
Ax þ

@h

@x
f ðx; hðxÞÞ ¼ BhðxÞ þ gðx; hðxÞÞ; ð16Þ

which can be solved for the coefficients to the power series in h: The dynamics on the center
manifold which determine the local qualitative behavior of the system thus follow:

’x ¼ Ax þ f ðx; hðxÞÞ: ð17Þ
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To study system behavior close to, but not at criticality, one may embed system parameters into
the center manifold as discussed in Ref. [20]. Here, the dimension of the center manifold is trivially
extended, its dynamics given by

’x ¼ Alx þ flðx; hlðxÞÞ; ’l ¼ 0; ð18Þ

where l corresponds to one or more system parameters.

3.2. Normal forms

The two-dimensional non-trivial center manifold dynamics for flutter are expressed in the form
of a power series whose coefficients depend on system parameters and details of the mathematical
model. A complementary tool, normal forms, establishes the existence of a co-ordinate
transformation, x ¼ Tlxþ PlðxÞ; that simplifies Eq. (18) considerably. Tl is a matrix crafted to
put the linear part of the dynamical system in a canonical form. PlðxÞ is a vector of polynomials,
beginning at quadratic order, whose coefficients are chosen to eliminate certain terms in the
ODEs. Application of the Normal Form Theorem [19] tells us that, given a Hopf bifurcation, the
equations can be cast into the following simplified form:

’x1 ¼ x1½sl þ clðx
2
1 þ x22Þ	 � x2½ol þ blðx

2
1 þ x22Þ	 þ Oð5Þ;

’x2 ¼ x1½ol þ blðx
2
1 þ x22Þ	 þ x2½sl þ clðx

2
1 þ x22Þ	 þ Oð5Þ: ð19Þ

Terms of fifth and higher order have been truncated. An initial glance at Eq. (19) may not reveal
the utility of normal forms. However, the resulting equations possess rotational symmetry ðSOð2ÞÞ

that we may exploit by switching to polar co-ordinates. Defining r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
and W ¼

tan�1ðx2=x1Þ; the normal form equations become

’r ¼ slr þ clr
3; ’W ¼ ol þ blr

2: ð20Þ

The first is an equation for oscillation amplitude which de-couples from W: We note that ’r  0
when r ¼ 0 and when r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sl=cl

p
: The point r ¼ 0 is a (zero amplitude) equilibrium

corresponding to an undisplaced airfoil. Meanwhile, when sl and cl are of opposite sign, r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sl=cl

p
corresponds to a finite amplitude limit cycle. In Fig. 6(a), we depict typical behaviors for

different values of sl and cl:
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As we vary a system parameter l (e.g., flow speed), the values of sl and cl change. We let l�
denote the critical value at which instability occurs (i.e., sl� ¼ 0), and without loss of generality,
we assume slo0 (resp. sl > 0) for lol� (resp. l > l�). Generically we expect cl�a0: Therefore,
as we continuously vary l in a neighborhood of l�; we trace out a curve in the sl; cl plane similar
to one of the dashed curves in Fig. 6(a). If cl� > 0; we say that the Hopf bifurcation is subcritical.
For cl�o0; it is supercritical. Qualitative sketches in amplitude � parameter space depicting the
emergence of periodic orbits are given in Fig. 6(b). Note that at l ¼ l�; the zero amplitude
equilibrium changes stability: the solid line (stable) becomes dashed (unstable). Arrows indicate
regions in which oscillation amplitudes either grow or decay. In the supercritical case, the
instability spawns a stable periodic solution for l > l�; whose amplitude grows like k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l� l�

p
initially. In the subcritical case, the periodic orbit is unstable and lies on the stable side of the
bifurcation. This latter case is recognized to be potentially dangerous: because of the unstable
limit cycle in the vicinity of the origin, small but finite perturbations may lead to growing
oscillations even though the system is linearly stable.
To determine whether a flutter instability is subcritical or supercritical, it is merely necessary to

check the sign of cl� : At l ¼ l�; the first of Eq. (18) becomes

’x1 ¼ ol�x2 þ f1ðx1; x2Þ; ’x2 ¼ �ol�x1 þ f2ðx1;x2Þ:

Guckenheimer and Holmes [19] report that the cubic normal form coefficient can be calculated by

cl� ¼ 1
16
ðf1;111 þ f1;122 þ f2;112 þ f2;222Þ

þ
1

16ol�
½f1;12ðf1;11 þ f1;22Þ � f2;12ðf2;11 þ f2;22Þ � f1;11f2;11 þ f1;22f2;22	; ð21Þ

where subscripts after the comma denote partial derivatives, i.e.,

fj;cmn :¼
@3fj

@xc@xm@xn

����
x¼0

:

Thus, to determine of the criticality of the Hopf bifurcation, we need only to perform a small
algebraic calculation rather than the full normal form transformation—usually a messy task. This
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approach lies in stark contrast to efforts previously referenced in which sub- or supercriticality
was determined by painstaking numerical integration. Even numerical continuation packages
such as AUTO [21] or CONTENT [22] require direct numerical simulation to follow branches of
periodic orbits. The center manifold/normal form approach affords us the opportunity to easily
perform a more thorough parametric study of the classical flutter problem with structural non-
linearities, and hence test conjectures of previous authors.
Although we apply the normal form approach to a relatively simple Theodorsen-like model,

there is no inherent limitation that would prevent it from being applied to more sophisticated
models incorporating three-dimensional or transonic flow, structural damping, or other effects,
provided suitable models can be derived. Implicit in the normal form approach, though, is that the
structural non-linearities of the system are well approximated by Taylor series truncated at cubic
order. This means that the normal form approach might not be applicable to systems with some
common non-smooth non-linearities such as free-play. A somewhat encouraging exploration of
this subject, in a different context, is presented in Ref. [23].
We begin our exploration with cubic structural non-linearities and then elaborate on effects of

quadratic non-linearities.

4. Cubic structural non-linearities

We begin by considering cases for which the only non-linearity of the system appears as cubic
restoring forces in the springs: da2 ¼ dh2 ¼ 0; da3a0; and/or dh3a0: These cases provide an
immediate means of comparison with results from previous authors, and they are easiest to
calculate.
Their simplicity derives from the fact that the center manifold becomes irrelevant in the cubic

order analyses. To illustrate, we observe that in Eq. (18), flðx; yÞ ¼ f
ð3Þ
l ðx; yÞ þ f

ð4Þ
l ðx; yÞ þ Oð5Þ;

where f
ð3Þ
l and f

ð4Þ
l contain cubic and quartic order terms, respectively. Since the center manifold is

tangent to the center eigenspace, the lowest order terms in its Taylor series expansion are
quadratic. Hence, the center manifold may be written as y ¼ hlðxÞ ¼ h

ð2Þ
l ðxÞ þ h

ð3Þ
l ðxÞ þ Oð4Þ:

Upon substitution into Eq. (18), the cubic order equations on the center manifold become

’x ¼ Alx þ f
ð3Þ
l ðx; 0Þ þ Oð4Þ: ð22Þ

Thus, when determining the criticality of the Hopf bifurcation via the cubic order normal form
coefficient in Eq. (21), one does not need to compute the center manifold. Further, all the second
derivatives on the second line of Eq. (21) vanish. Since Eq. (21) is a linear combination of third
derivatives of f

ð3Þ
l� ; it is simple to verify that the normal form coefficient takes the form

cl� ¼ pda3 þ qdh3 ; ð23Þ

where the constants p and q depend on other system parameters.
Within the da3 ; dh3 parameter space, the line pda3 þ qdh3 ¼ 0 shown in Fig. 7 separates

subcritical from supercritical Hopf bifurcations. The relative values of the coefficients p and q
determine the orientation yA½�p;pÞ of this boundary. When y > 0; as shown in the figure, the
flutter criticality hypothesis holds: a hard pitch spring produces a supercritical bifurcation while a
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soft spring yields a subcritical instability. Cases for which yo0 represent counterexamples to the
hypothesis.

4.1. Typical results

In Figs. 8(a) and (b), we hold the parameters m; xea; and ra fixed. The first shows level curves of
the flutter speed *UF as the parameters X and w vary. The largest level set shown coincides with the
divergent flutter speed *UD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mr2a=ð2xea � 1Þ

p
[24], beyond which the aeroelastic instability is not

of the oscillatory Hopf type; a purely real eigenvalue crosses the imaginary axis.
For the same set of parameter values, we show in Fig. 8(b) level sets for y; the orientation of the

criticality boundary. Since the normal form approach allows us to determine criticality of more a
thousand cases in roughly a second of time using a common desk-top computer, generating data
for the figure is quite feasible. For reference, the level sets of *UF are overlaid as dotted curves in
Fig. 8(b). The shaded region indicates parameter regions for which yo0: For these parameters,
the flutter criticality hypothesis does not hold.
Three slices at w ¼ 0:1; 0.2, and 0.3 through the data of Fig. 8 are shown in Figs. 9(a), (b), and

(c), respectively. Both y and *UF are depicted. For w ¼ 0:1; the angle y jumps by �p as the flutter
boundary touches *UF ¼ 0: Thus, the regions of the da3dh3 parameter space (Fig. 7) in which sub-
and supercritical Hopf bifurcations occur are suddenly interchanged. We provide a physical
explanation in Section 4.4. For w ¼ 0:2 and 0.3, flutter boundaries are safely separated from zero,
and y varies continuously with respect to X ; although changes may be abrupt. In Section 4.4, we
provide a physical explanation for the sudden jumps. Before doing so, though, we demonstrate
numerically that the normal form analysis predicts correct dynamic behavior.

4.2. Numerical agreement: model equations

We begin our numerical comparison and verification with the model equations (1) with fourth
order aerodynamics as described in Section 2.2. Typical parameters we use for an illustrative
example are: m ¼ 20; xea ¼ 0:6; ra ¼ 0:5; w ¼ 0:1; and X ¼ 1:7: The flutter corresponding speed is
*UF ¼ 3:778: According to theoretical predictions in Figs. 8 and 9(a), this is a case which
contradicts the flutter criticality hypothesis.
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First we observe that when *U ¼ 0; the system is Hamiltonian with conserved energy

E ¼
1

2
1þ

1

m

 �
*h02 � w�

1

m
ðxea � 1Þ

 �
*h0a0

þ
1

2
r2a þ

1

m
ðxea � 1Þ2 þ

1

8m

 �
a02 þ r2a

*V: ð24Þ

When *Ua0; the Hamiltonian structure is destroyed, but E provides a good scalar measure of the
oscillation amplitude. Several plots of this amplitude measure are shown in Figs. 10(b) and (c)
versus dimensionless time, t: Despite the hard spring ðda3 ¼ 50Þ used in first set of simulations,
Fig. 10 clearly shows subcritical behavior. Sufficiently small perturbations decay as expected,
since the flow speed is set below the flutter velocity ð *U ¼ 0:9 *UF Þ: Slightly larger initial conditions
grow due the presence of an unstable limit cycle. The example contradicts the flutter criticality
hypothesis, but agrees with our normal form analysis.
When the spring is soft ðda3 ¼ �10Þ in Fig. 10(c), with flow speed set slightly above flutter

velocity ð *U ¼ 1:1 *UF Þ; initial conditions are attracted to a stable periodic orbit. This indicated the
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presence of a supercritical Hopf bifurcation, again contradicting the flutter hypothesis, yet
agreeing with our analysis.
As demonstrated by Liu et al. [15], the amplitudes of limit cycles are well approximated by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�sl=cl

p
; modulo the scalings embedded in the normal form transformations. In both sets of

solutions, the effective angles of incidence on the airfoil remain well below 10�; supporting our
modelling assumption of attached flow.

4.3. Numerical agreement: high fidelity simulation

To demonstrate that this contradictory behavior is not an artifact of modelling approximations
employed in Section 2.1. We perform a second set of simulations of a high fidelity model similar to
those of Kim and Mook [25] and Hall [26]. Here, the airfoil is treated as a flat plate on which we
distribute bound vorticity in the form of Glauert modes [27]:

*gðx; tÞ ¼ 2 *U A0ðtÞ
1þ cosðfÞ
sinðfÞ

þ
XN
n¼1

AnðtÞ sinðnfÞ

" #
; ð25Þ

which automatically satisfies the Kutta condition, and where f and x are related by x ¼
ð1� cosðfÞÞ: The time dependent modal coefficients AnðtÞ are chosen to satisfy non-penetration
conditions, cancelling the upwash, W ðx; tÞ ¼ W ðmÞðx; tÞ þ W ðwÞðx; tÞ; induced by blade motion
ðW ðmÞÞ and vorticity in the wake ðW ðwÞÞ: As illustrated schematically in Fig. 11, the wake is
represented by a flat line of point vortices, one shed at each time step to satisfy Kelvin’s
circulation theorem. The vortices are then convected downstream by the mean flow. Lifts and
moments can be calculated by

*L ¼
1

p *U

Z 2

0

*gðxÞ dxþ
1

p *U2

Z 2

0

Z x

0

*gð#xÞ0 d#x dx;

*Mea ¼
1

p *U

Z 2

0

ðxea � xÞ*gðxÞ dxþ
1

p *U2

Z 2

0

ðxea � xÞ
Z x

0

*gð#xÞ0 d#x dx: ð26Þ
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Once the aerodynamic forces, involving the Glauert modes and hundreds of point vortices, are
incorporated into the equations of motion (1), the dynamical system may be integrated
numerically. In Fig. 12, we compare the in-phase and out-of-phase components of the frequency
response of the high fidelity simulation to the real and imaginary parts of Theodorsen’s function.
Once we subtract off apparent mass effects, the numerical simulations (symbols) agree very well
with the theoretical curves.
Finally, in Fig. 13, we plot results from the high fidelity numerical simulations with parameters

and initial conditions chosen to be completely analogous to those of the eighth order model
presented in Fig. 10. Again, we observe the hard-subcritical/soft-supercritical bifurcation which
contradicts the flutter criticality hypothesis. It is almost identical to the low order model, and
exactly as predicted by the theory.
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4.4. Physical insight

As we saw in Fig. 8, the angle y of the boundary in ðda3 ; dh3Þ space that separates subcritical
from supercritical systems, can change rapidly (even discontinuously) as parameters are changed
smoothly. Furthermore, this rapid change appears to coincide with the boundary between systems
which do and do not satisfy the flutter hypothesis. To provide a physical explanation, we turn to
the situation for w ¼ 0:1 of Fig. 9(a) in which the change is most dramatic. Specifically we consider
X ¼ XA ¼ 1:21 and X ¼ XB ¼ 1:212113 which we shall refer to as systems A and B, respectively.
They are labelled in Fig. 9(a). Although the parameters for the two systems are nearly identical,
the former obeys the flutter criticality hypothesis with y ¼ 0:89 rad while the latter contradicts the
hypothesis with y ¼ �2:25 rad: In both systems *UFE0:0082: At the onset of instability, *U ¼ *UF ;
the linearized ðdh2 ¼ dh3 ¼ da2 ¼ da3 ¼ 0Þ equations of motion possess a sinusoidal solution of the
form a ¼ cosðotÞ; h ¼ H cosðotþ fÞ; where H; o; and f are determined from eigenvectors and
eigenvalues. Since the critical eigens vary continuously in this parameter neighborhood, the
sinusoidal solutions to the linearized systems corresponding to systems A and B are nearly
identical.
To illuminate the dramatic differences in non-linear behavior between the two nearly identical

systems, we look at the mechanical work generated by the fluid on the motion of the blade. Of the
numerous terms in lift (3), only the terms *L1=4 ¼ 2 *G and *L3=4 ¼ a0= *U are capable of producing net
work per period of the sinusoidal oscillation. The remaining terms have a Hamiltonian structure
and thus preserve energy measures. The subscripts of the lift components refer to the centers of
pressure at which they act: 1

4
- and 3

4
-chord, respectively. Work per cycle, therefore, is W ¼

W1=4 þW3=4; where

W1=4 ¼
Z t0þT

t0

*L1=4ðtÞ*v1=4ðtÞ dt; W3=4 ¼
Z t0þT

t0

*L3=4ðtÞ*v3=4ðtÞ dt: ð27Þ

Here, *v1=4 and *v3=4 are the vertical components of the airfoil velocity at their respective locations
on the chord.
In Fig. 14(a), we plot time traces of the two components of power, *Pj ¼ *Lj *vj: One period of

oscillation is presented. In system A, *P1=4 is mostly positive, while *P3=4 is mostly negative.
Therefore, the two contributions, W1=4 and W3=4; to the total work per cycle will be positive and
negative, respectively. Since the plots were computed at the critical flow speed, the net work must
be zero: W1=4 þW3=4 ¼ 0: We present an analogous plot of the powers over one period of the
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sinusoidal solution of system B in Fig. 14(b). Again,W1=4 þW3=4 ¼ 0: However, the roles of *P1=4

and *P3=4 have suddenly and completely reversed: *P1=4 produces net negative work while *P3=4

generates positive work.
Between systems A and B, *L3=4 and v1=4 vary only imperceptibly. The velocity at the

3
4
-chord

location, though, undergoes an abrupt phase shift as shown in Fig. 14(c). Furthermore, since *L1=4

depends directly on the upwash at the 3
4-chord location, it experiences the same shift and hence

both components of the work shift accordingly.
The abrupt phase shift is symptomatic of zero flow velocity flutter ð *UF ¼ 0Þ; a phenomenon first

illuminated by Biot and Arnold [28]. The flutter velocity falling to zero as parameters vary
coincides with a nodal point of one of the vibration modes passing through the 3

4
-chord location.

In other words, pitch and plunge are co-ordinated so that the airfoil rotates about its 3
4
-chord

point, which remains motionless. When varying X from system A to system B, the fact that v3=4
passes through zero causes the abrupt change in the phase of the normalized velocity *v3=4:
When we include structural non-linearities, the solutions get distorted somewhat, and the two

components of work generally will not balance at *U ¼ *UF : If the negative component of work is
enhanced relative to the positive, the system non-linearities provide a stabilizing effect indicative
of a supercritical Hopf bifurcation. Similarly, a net positive work by the non-linear terms signifies
a subcritical instability. The fact that the negative components of work suddenly become positive
components of work and vice versa between systems A and B causes the sudden change in the
nature of the flutter criticality.
In Fig. 15(a), we plot the coefficients p and q of Eq. (23) as X varies in the neighborhood of

systems A and B. At zero flutter, *U ¼ *UF ¼ 0; the system is Hamiltonian and hence energy is
conserved. At this instant, cl� is identically zero and hence p  q  0: Therefore the curve in Fig.
15(a) must pass through the origin, explaining the jump by p in the quantity y ¼ tan�1ðp=qÞ:
When *U ¼ *UF ¼ 0; energy (24) is conserved and hence the normal form coefficient cl� in

Eq. (20) is identically zero: ðp ¼ q ¼ 0Þ: This explains the jump in y by p in Fig. 9(a). For
situations such as those shown in Figs. 9(b) and (c), there is no zero velocity flutter and hence no
discontinuous jump in y: However, the center of rotation, although not on the blade, does pass
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close to the 3
4
-chord location, causing the ðp; qÞ curve in Fig. 15(b) to pass close to the origin and

hence cause an abrupt change in y:

4.5. Counterexamples to flutter hypothesis prevail

Although we state that the results of Section 4.1 are typical, we have not demonstrated this. In
particular, one may be interested in the degree to which counterexamples to the flutter criticality
hypothesis prevail. Therefore, consider Figs. 16–19 in which we show level sets of *UF and y;
analogous to Figs. 8(a) and (b).
In Figs. 16 and 18, the dimensionless radius of gyration, ra; about the elastic axis takes the

values 0.5, 0.8, 1.2, while the chosen values of elastic axis location, xea; are 0.2, 0.6, 1.0, 1.4, 1.8.
The mass ratio is constant at m ¼ 20: In the plots of Figs. 17 and 19, we fix ra ¼ 0:5; allow
xea to vary as before, and choose m ¼ 10; 40, 80. Within the individual plots, bounds on X
and w are typically chosen to cover all possible values for which the oscillatory flutter
occurs. However, since divergent flutter does not occur for xeao0:5; we show only level sets for
*UFp10:0 in these cases. As in Fig. 8, we shade regions which contradict the flutter criticality
hypothesis.
Although the details differ, the plots exhibit common features. All show regions which

contradict the flutter criticality hypothesis, some more prominently than others. In all, there is a
curve in parameter space corresponding to zero flow speed flutter, UF ¼ 0: The criticality
boundary angle, y; jumps discontinuously by p across the zero flutter curves, similar to that
depicted in Fig. 9(a). On those parts of the boundaries between shaded and unshaded Hopf
regions which do not coincide with *UF ¼ 0; the angle y varies continuously from �p to p: Thus
the case we studied in detail in previous subsections is representative of flutter phenomena in
general.
One may notice that the plots with xea ¼ 0:2 differ from the others: they do not exhibit

divergent flutter, and there are two distinct boundaries which separate Hopf bifurcations which do
and do not obey the flutter criticality hypothesis. In Fig. 20(a), we show level sets of y for such a
system with xea ¼ 0:2; m ¼ 20; ra ¼ 0:5: Figs. 20(b) and (c) show data for *UF and y along slices of
the parameter space at X ¼ 0:75 and 2.0, respectively. The first is rather uneventful, however, the
second slice passes through both boundaries of the shaded region. On the first boundary crossing
near w ¼ 0:08; y varies continuously from p to �p: The second boundary crossing near w ¼ 0:138
is one for which the system passes through zero speed flutter and y jumps by p:

5. Quadratic non-linearities

When we include quadratic non-linearities in the restoring forces, we break the reflection
symmetry, ðh; aÞ/ð�h;�aÞ; of the system. Nonetheless, the physical problem still possesses a
higher order symmetry: the equations of motion are equivariant under the transformation
ðh; a; dh2 ; da2Þ/ð�h;�a;�dh2 ;�da2Þ: Therefore, the cubic normal form coefficient cl� of Eq. (21)
must be invariant under ðdh2; da2Þ/ð�dh2;�da2Þ: This means that, regardless of which direction
the symmetry is broken, the qualitative nature of the instability is the same.
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To formally account for the quadratic non-linearities in the calculation of cl� ; it becomes
necessary to incorporate the center manifold into the analysis. If we let gð2Þðx; yÞ denote the
quadratic part of gðx; yÞ in Eq. (15), then the quadratic part of gðx; hðxÞÞ in Eq. (16) is gð2Þðx; 0Þ:
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Therefore, at quadratic order, Eq. (16) is

@hð2Þ

@x
Ax ¼ Bhð2ÞðxÞ þ gð2Þðx; 0Þ; ð28Þ
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where hð2ÞðxÞ is the quadratic part of the center manifold as in Section 3.1. One can easily solve
Eq. (28) for the expansion coefficients in hð2Þ; which will be linear functions of the coefficients da2
and dh2 : Then, in Eq. (18), we may write f ðx; hðxÞÞ ¼ f ð2Þðx; 0Þ þ f ð3Þðx; 0Þ þ f ð2Þðx; hð2ÞðxÞÞ þ Oð4Þ:
Here, the expansion coefficients in f ð2Þðx; 0Þ are linear in dh2 and da2 ; while those of the cubic order
pieces of f ð2Þðx; hð2ÞðxÞÞ are quadratic in dh2 and da2 : As before, the expansion coefficients of
f ð3Þðx; 0Þ are linear in dh3 and da3 : Finally, since Eq. (21) is linear in the cubic expansion coefficients
and quadratic in the quadratic expansion coefficients, we find

cl� ¼ daad
2
a2
þ dahda2dh2 þ dhhd

2
h2
þ pda3 þ qdh3 : ð29Þ

Thus, the ðda2 ; dh2Þ/ð�da2 ;�dh2Þ symmetry anticipated above holds. Having investigated cubic
non-linearities already, we set da3 ¼ dh3 ¼ 0 in Eq. (29) and consider the remaining quadratic
form.
Returning to the ‘‘typical cases’’ of Section 4.1 with xea ¼ 0:6; m ¼ 20; and ra ¼ 0:5; we consider

three systems as labelled C, D, and E in Fig. 21(a). The shaded region corresponding to yo0 in
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Fig. 21. For the parameters of Fig. 8, we show regions (cross-hatched) in (a) for which cl in Eq. (29) is positive definite.

Elsewhere it is hyperbolic. Level sets of cl for the three typical cases labelled C, D, and E, respectively in (a) are shown

as (b) C, (c) D and (d) E.
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B.D. Coller, P.A. Chamara / Journal of Sound and Vibration 277 (2004) 711–739732



Fig. 10 is transferred over to Fig. 21(a) for illustrative purposes. For system C, the quadratic form
in Eq. (29) is hyperbolic: certain combinations of da2 and dh3 yield positive values of cl� and hence
subcritical Hopf bifurcations, while others cause supercritical bifurcations with cl�o0: For
system D, the quadratic form for cl� is hyperbolic also. However, note that the roles of dh2 and da2
have been interchanged. An explanation for the reversal of roles is identical to that for the cubic
coefficients provided in Section 4.4.
Finally, in system E, the quadratic form for cl� is positive definite and the level sets are elliptic

as shown in the corresponding plot. Here, any non-zero combination of da2 and dh2 causes the
Hopf bifurcation to be subcritical. Such positive definite (or subcritical definite) cases persist
throughout the cross-hatched region of Fig. 21(a).
For the sets of parameters used to generate Fig. 18, we provide plots for the quadratic

effects, analogous to Fig. 21 in Fig. 22. Within a sea of mostly hyperbolic character for
which both types of Hopf bifurcations are possible, there are islands of positive definite
normal form coefficients, indicated with a cross-hatched pattern, in which the quadratic
non-linearities produce only subcritical Hopf bifurcations. Interestingly, negative definite regions,
in which only supercritical Hopf bifurcations occur, are rare. The only such occurrence in the
systems of Fig. 22 happens in the in a very small island in the bottom right plot with xea ¼ 1:8
and ra ¼ 1:2:

6. Comparisons to harmonic balance

Equivalent linearization via harmonic balance, also known as the method of describing
functions, has been successfully employed in the study of post-instability behavior of the flutter
problem with structural non-linearities [4,10–12]. In procedures [29,30], one assumes a sinusoidal
solution. Then, upon substitution into the equations of motion and truncation of higher
harmonics that arise through the non-linearities, one investigates conditions under which the
assumed solutions are approximately satisfied.
One of the key assumptions in the describing function approach is that the system possesses a

strong filtering property which severely attenuates superharmonics. Despite claims made by Shen
[10], it is not clear that the flutter problem possesses such a property. This is one of the reasons we
have relied on normal forms, which have a more rigorous foundation, from which to perform
analysis.
Nonetheless, the approach is not without merit. For small amplitudes, the lower harmonics do

tend to dominate, and the method provides intuitively appealing explanations for the nature of
the behavior. As a postscript, we shall use harmonic balance to generate y data as in Section 4.1
and compare results with Fig. 8.
We find it simplest to perform the harmonic analysis on the dimensional version of the

equations of motion

m .h � mbw.aþ kh1h þ kh3h
3 ¼ L;

� mbw .h þ Iea .aþ ka1aþ ka3a
3 ¼ Mea: ð30Þ
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Fig. 22. Effects of quadratic non-linearities with parameters identical to those of Fig. 16. Regions for which cl� is

positive definite and negative definite are indicated by cross-hatching and solid black fill, respectively. Otherwise, the

quadratic form is hyperbolic. Light shaded regions correspond to yo0 for reference. Level sets of *UF are juxtaposed.
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We start by assuming a sinusoidal solution: h ¼ h1 sinðotÞ; a ¼ a1 sinðot þ fÞ: The terms kh1h þ
kh3h

3; ka1aþ ka3a
3; representing structural restoring forces in Eq. (30) become

kh1h1 sinðotÞ þ kh3h
3
1
3
4
sinðotÞ � 1

4
sinð3otÞ

� �
- kh1 1þ

3da3
4

h21
b2

� 	
h1 sinðotÞ;

ka1a1 sinðoþ fÞ þ ka3a
3
1
3
4
sinðot þ fÞ � 1

4
sinð3ot þ 3fÞ

� �
- ka1 1þ

3da3
4

a21

� 	
a1 sinðot þ fÞ; ð31Þ

respectively. The right arrows ð-Þ above filter out the leading harmonic and make connections to
the dimensionless cubic coefficients d�3 : From the perspective of harmonic balance, the cubic non-
linearities effectively augment the linear plunge and pitch spring stiffnesses by kh1dh33h21=4b2 and
ka1da33a1=4; respectively. The amounts by which the stiffnesses change are proportional the cubic
coefficients da3 ; dh3 ; and to the square of the oscillation amplitudes.
In Fig. 23(a), we show a schematic plot of UF ; the flutter velocity of the linearized system, as a

function of plunge spring stiffness, kh1 : All other parameters are held fixed. Consider a nominal
system with parameters chosen so that it lies directly on the stability boundary as depicted in
Fig. 23(a). Then, as one perturbs the oscillation amplitude from zero, the effective plunge spring
stiffness either increases or decreases, depending on the sign of dh3 : If dh3 > 0; the spring effectively
gets stiffer with increasing amplitude, and from the perspective of the first harmonic, the system is
drawn into the unstable regime where solutions grow. Therefore, the dh3 > 0 non-linearity induces
growth of solutions in Fig. 23(a), similar to systems exhibiting subcritical Hopf bifurcations.
Likewise, dh3o0 shows characteristics of supercritical bifurcations.
The boundary between subcritical and supercritical bifurcations in Fig. 7 corresponds to

combinations of da3 and dh3 that leaves cl� fixed at zero. From the harmonic balance perspective,
the boundary coincides with combinations of da3 and dh3 (or ka3 and kh3) that leaves U fixed at UF :
To express this mathematically, let pðlÞ denote the characteristic polynomial of the linearized

system; then define prðOÞ and piðOÞ to be the real and imaginary parts, respectively of pðiOÞ: If
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l ¼ io is an eigenvalue of the nominal system, then pðioÞ ¼ prðoÞ ¼ piðoÞ ¼ 0: Taking
differentials, we obtain

@pr

@O

����
0

dOþ
@pr

@ka1

����
0

dka1 þ
@pr

@kh1

����
0

dkh1 þ
@pr

@U

����
0

dU ¼ 0;

@pi

@O

����
0

dOþ
@pi

@ka1

����
0

dka1 þ
@pi

@kh1

����
0

dkh1 þ
@pi

@U

����
0

dU ¼ 0: ð32Þ

The derivatives are evaluated for O ¼ o; U ¼ UF ; and all other parameters set to those
corresponding to the nominal system at criticality. We set dU ¼ 0 so that U remains constant at
U ¼ UF as described above. Eliminating dO from Eq. (32), expressing ka1 and kh1 in terms of da1
and dh1 as discussed above, and setting a1 ¼ bh1; we obtain

dh1

da1
¼

r2ab
2b2

X 2

@pi
@ka1

���
0
� @pr

@ka1

���
0

@pr
@kh1

���
0
� @pi

@kh1

���
0

2
64

3
75: ð33Þ

The quantity b may be obtained from the critical eigenvector. The portion above in square
brackets has units 1=length2; and the entire right hand side of Eq. (33) may be expressed in terms
of the dimensionless quantities used throughout the paper. Although the expression is lengthy,
consuming several pages, it is manageable using symbolic mathematics software. Taking the arc-
tangent of Eq. (33) yields the angle y in Fig. 7.
For comparison, we return once again to the typical system of Section 4.1. Using the range of

parameters outlined there, we compute y using Eq. (33), shade the region with yo0; and
superimpose level sets of *UF : The plot is shown in Fig. 23(b). The results are indistinguishable
from those computed via normal forms in Fig. 8(a). We have obtained similar corroborating
results for other sets of parameter values and for quadratic non-linearities. The time to compute
the y data in Fig. 23(b) is roughly the same as that required to compute Fig. 8(a). The most time-
consuming part of the computation are the eigenvalue/eigenvector calculations necessary in both
approaches.

7. Conclusions

Although the data are cumbersome to display, the normal form approach promoted here is
effective and efficient at performing extensive parametric studies of the non-linear character of the
flutter Hopf bifurcation. In performing such an analysis, we find that counterexamples to the
flutter criticality hypothesis are far more common than expected, based upon the literature over
the past half-century. Perhaps the lack of counterexamples is largely due to the fact that they
typically occur for X > 1; outside what are usually regarded as practically relevant systems.
However, one of our primary motivations for this study comes from a class of flow separation

problems in which it has been demonstrated that small amplitude, open-loop, periodic
perturbations have been shown to dramatically improve performance measures: e.g., lift
enhancement, pressure recovery, or drag reduction. The work reported here is part of a larger
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effort to explore the possibility of using small fluttering airfoils as semi-passive flow actuators in
such applications. In this context, aeroelastic systems for which X > 1 are relevant.
Furthermore, it is within this context that the normal form approach developed herein truly

demonstrates its utility. Not only do normal forms provide an efficient framework for performing
parametric qualitative studies of non-linear dynamics, the approach naturally extends to the study
of multiple interacting aeroelastic instabilities as we demonstrate in the companion papers [14,31].
Describing functions are not suitable in such situations. Bifurcation-tracking and continuation
software packages such as AUTO [21] and CONTENT [22] are far less efficient in large scale
parametric explorations.
It is worth noting, however, that the normal form approach advocated herein does not provide

detailed information about dependence on initial conditions, as does direct numerical simulation.
In this sense, our work is complementary to traditional approaches.
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Appendix A. Nomenclature

h vertical displacement of elastic axis (positive upward)
a airfoil pitch (positive nose up)
t time
b half the airfoil’s chord
r fluid density per unit depth
m mass of airfoil
Iea moment of inertia about elastic axis
�½kh1h þ kh2h

2 þ kh3h
3	 restoring force of plunge spring

�½ka1aþ ka2a
2 þ ka3a

3	 restoring force of pitch spring
oh uncoupled natural plunge frequency ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kh1=m

p� �
oa uncoupled natural pitch frequency ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ka1=Iea

p� �
V potential function for restoring forces
L aerodynamic lift
Mea aerodynamic moment about elastic axis

Dimensionless parameters

*h normalized displacement airfoil displacement ð¼ h=bÞ
wb location of center of mass of airfoil aft of the elastic axis
xeab location of the elastic axis aft of the leading edge
t dimensionless time ð¼ oatÞ
dh2 quadratic plunge spring coefficient ð¼ bkh2=kh1Þ
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dh3 cubic plunge spring coefficient ð¼ b2kh3=kh1Þ
da2 quadratic pitch spring coefficient ð¼ ka2=ka1Þ
da3 cubic pitch spring coefficient ð¼ ka3=ka1Þ
X ratio of uncoupled natural frequencies ð¼ oh=oaÞ
m mass ratio ð¼ m=prb2Þ
ra dimensionless radius of gyration ð¼ Iea=mb2Þ
*V dimensionless potential ð¼ V=ka1Þ
*U dimensionless flow speed ð¼ U=boaÞ
*L dimensionless lift ð¼ L=prbU2Þ
*Mea dimensionless moment about elastic axis ð¼ Mea=prU2Þ

Kj coefficients in exponential approximation of Wagner’s function
sj exponents in exponential approximation of Wagner’s function
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